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A Review of Multitaper Spectral Analysis
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Abstract—Nonparametric spectral estimation is a widely used
technique in many applications ranging from radar and seismic
data analysis to electroencephalography (EEG) and speech pro-
cessing. Among the techniques that are used to estimate the spectral
representation of a system based on finite observations, multitaper
spectral estimation has many important optimality properties, but
is not as widely used as it possibly could be. We give a brief overview
of the standard nonparametric spectral estimation theory and the
multitaper spectral estimation, and give two examples from EEG
analyses of anesthesia and sleep.

Index Terms—Electroencephalogram (EEG) analysis, multita-
per, spectral estimation.

1. INTRODUCTION

ANY natural systems exhibit oscillatory dynamics. Ex-
M amples include electroencephalogram (EEG) and local
field potential recordings from the human brain [1], speech [2],
oceanography [3], climatic time series [4], and seismic data [5].
Characterizing such oscillatory behavior gives insight into the
underlying dynamics of these systems. However, it is often not
clear how to efficiently analyze the output of the system in the
time domain. A frequency domain or spectral analysis of the
output is often more informative. In order to conduct a spectral
analysis, we need to address two main issues. First, in order to
describe a system in frequency domain, in principle, we need
to have a sample of infinite length of the output of the sys-
tem. Second, most of the observable natural phenomena exhibit
stochasticity, which can be due to the intrinsic properties of
the system or can be an artifact of the observation. Therefore,
infinitely many realizations of the output of the system are re-
quired to capture the stochastic properties. However, in most
problems, we can only observe the output of these systems as a
single realization with finite length.

The theory of spectral estimation aims at addressing these is-
sues, and thus provides a framework to estimate the frequency-
domain representation of the output of a stochastic system based
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on finite data. Finite data typically result in spectral estimates
which are both biased and suffer from high error variance. Sev-
eral methods have been suggested in the nonparametric spectral
estimation literature to reduce the bias (e.g., tapering) or the
variance (e.g., lag window smoothing) of the estimates [6], but
they usually depend on ad hoc parameters which are often chal-
lenging to tune in practice.

Arguably, the first nonparametric method to address the is-
sues of bias and variance simultaneously in an “optimal” fashion
appeared with the introduction of the multitaper spectral esti-
mation technique [7]. Multitaper spectral analysis has gained
popularity among some researchers in bioengineering and neu-
roscience in recent years (see, for example, [8]-[13]). However,
it is not as widely used as it possibly could be. Although the
original presentation by Thomson is elegant and rigorous, it is
not readily accessible to the general audience. We review the
conceptual framework of multitapering for the broader audience
in biomedical engineering. We give a brief overview of the bias
and variance problems by examining two of the basic nonpara-
metric spectral estimation techniques, namely the periodogram
and tapered spectral estimates. We describe how the multita-
per spectral estimation simultaneously addresses the issues of
bias and variance. Finally, we present two applications of mul-
titaper spectral estimation in EEG analyses in anesthesia and
sleep to highlight the significance of this technique in real data
applications.

II. SECOND-ORDER STATIONARY RANDOM PROCESSES AND
THEIR SPECTRAL REPRESENTATION

Let z(t) be the output of a stochastic system at time ¢ and sup-
pose that the output is observed at a sampling rate of Fy :=
where A denotes the sampling interval. We use the symbol “:
to indicate definitions. The equivalent observed signal in discrete
time can be defined as xj, := x(kA), for k =0,1,2,.... The
most intuitive approach to developing a spectral representation
of a stochastic system is to compute the Fourier transform of
its output. However, the Fourier transform of a random signal
is in general undefined, due to lack of integrability in contin-
uous time or summability in discrete time [6]. Let us instead
consider a sample of the output of size N, given by z; for

L
A°
_»

k=0,1,..., N — 1. The Fourier transform of x; can be writ-
ten as
N-1
X(f) =40 ape A 1)
k=0

The power of the signal =, in the band f + %5 f is approximately
given by

1
Pi= | X(f)PSf. @)
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Fig. 1. The AR(6) process given by (7). (a) Sample of length 1024, (b) the autorcovariance sequence, and (c) the PSD.

If we take the expectation of the power and let N — oo, the
quantity

. 1 2
Jm B{ KR fof ®
gives the average power of the signal around frequency f, where
E{-} is the ensemble expectation. But, this quantity is impos-
sible to compute in practice, since it requires infinitely many
samples (N — oo) and infinitely many realizations of the out-
put signal. Therefore, the standard approach in spectral analysis
is to restrict analyses to the class of random signals which are
second-order stationary (s.0.s.) and ergodic. For an s.0.s. process
xr, k=0,1,2,..., the mean is independent of k:

wi = E{x;} =p, i=,0,1,... 4

and the autocovariance sequence satisfies

1,7 =0,1,...

&)
Hence, the autocovariance sequence can be expressed as sg,
for £ =0,1,.... The process is ergodic, if the ensemble ex-
pectation equals the time expectation (see [14] for an extended
discussion).

Examples of ergodic s.0.s. signals are the white noise process,
autoregressive processes, and the harmonic process. In partic-
ular, s.o.s. random processes admit a spectral representation
by virtue of the Wiener—Khinchin theorem [15]. This theorem
states that for discrete s.0.s. stochastic processes,

Sij = ]E{(Ii — pi)(xj — M)} = Sli—j|s

. ]‘ . —127
A&%E{M|Xp(f)2}: S(f):Ak:%OCSk@ TRIA
(6)

Comparing (3) and (6), we observe that S(f) is the power den-
sity of the random signal z;. at frequency f and is thus termed
the power spectral density (PSD). The Wiener—Khinchin theo-
rem shows that for s.o.s. random signals, the Fourier transform
of the autocovariance sequence is equivalent to the PSD.

If we know the autocovariance sequence s; of an ergoidic
s.0.s. signal z;, for —oo < k < o0, then, in principle, the spec-
tral density can be computed. But, computing the autocovariance
requires carrying out time averages over an infinite sample size
of the random signal x;. The main question of spectral esti-
mation for s.0.s. random signals is: how can we estimate s,
given a sample of finite length of a random signal x, so that its
Fourier transform is a reliable estimate of the PSD? Let S(f)
be an estimate of the true PSD S(f) of a random signal ;. We
require that a reliable estimator of S( f) satisfies:

1) Approximate unbiasedness: ]E{§ (f)} = S(f).

2) Low variance: Var{g(f)} ~ 0.

As an illustration of an ergodic s.o.s. process with known
properties, we use a sixth-order autoregressive process, denoted
henceforth by the AR(6) process, given by

= 3.9515x) 1 — 7.8885x1 9 + 9.7340x)_3

— 7.7435x; 4 + 3.8078x_5 — 0.9472x ¢ +vi  (7)

where vy is zero-mean independent, identically distributed
Gaussian noise with unit variance. Fig. 1(a) shows a sample of
length 1024 from the AR(6) process, which is used throughout
this study for spectral estimation. The autocovariance sequence
and the PSD of the AR(6) process are shown in Fig. 1(b) and
(c), respectively.
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III. PERIODOGRAM AND TAPERING
A. The Periodogram

Suppose that a sample of size N of the random signal zj, is
given. The most intuitive approach to obtain a nonparametric
estimate of the autocovariance sequence s; is the method of
moments, where the estimate is based on the sample mean and
sample autocovariance of the data

e
= ; i ®)
and
| Nk
Sy = N Z (; — ) (zisr — 1) )

i=0

Taking the Fourier transform of the above estimate gives

N-1
N jg:

k=—N+1

N-1

E Tk e—tZwka

Sei2mhIA

(10)
The estimate of (10) is called the periodogram and is attributed
to Schuster [16]. Fig. 2(a) shows the periodogram estimate
of the PSD of the AR(6) process. The periodogram estimate
has two drawbacks that are evident in Fig. 2(a). First, beyond
fA =~ 0.25, the estimate has a significant deviation from the
true PSD. Moreover, at lower frequencies, the estimate has a
very high variability. Indeed, we can compute the expectation
of the periodogram estimate as [6]

1/2A
B{SUN} = [ NADR(U - NS b
where
2 (pn) . SWIVTSA)
PR = Nr(rra) 1

The function NAD? (fA) is called the Fejér kernel. Equation
(11) shows that the expectation of the periodogram estimate is a
smoothed version of the true PSD, where the smoothing kernel
is NADZ (fA). Fig. 2(b) shows the Fejér kernel centered at
fA = 0.4. The deviation of the expectation of the estimate from
the true PSD is termed bias. The bias at a given frequency can be
roughly decomposed into a narrow-band bias (resolution) and a
broad-band bias [6]. The narrow-band bias comes from the main
lobe of the smoothing kernel, which blurs the estimate within
the width of the main lobe. The broad-band bias results from the
contribution of the side lobes of the smoothing kernel, which
leaks the broad components of the PSD into the estimate at any
given frequency. For instance, at fA = 0.4, the broad-band bias
has a significant contribution, since the side lobes are aligned
with the peaks of the true PSD.

B. Bias Reduction via Tapering

Tapering, originally proposed by Blackman and Tukey [17],
is an effective way to tradeoff the broad-band and narrow-
band bias of spectral estimates. Consider a taper hi, k =
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Fig. 2.

Periodogram estimate of the PSD of the AR(6) process. (a) Peri-
odogram estimate. (b) Fejér kernel centered at f A = 0.4. The zoomed-in view
of the main lobe is shown on the top left.

0,1,2,..., N — 1, which is multiplied by the data z; to form
the so-called tapered data. The peridogram of the tapered data
constitutes the tapered spectral estimate:

2

N-1
SHE) = A D hyagei2mEA (13)
k=0
The expectation of the tapered estimate is given by [6]
/28 4 )
s(50y= [ Mu - pPsear an
1/2A
where
N-1 2
]H(f)|2 — A2 Z hke’””km (15)
k=0

Equation (14) implies that the expectation of the tapered esti-
mate is a smoothed version of the true PSD, where the smoothing
kernel is given by +|H(f)|*. Therefore, by designing the taper
h;. with small side lobes, the broad-band bias can be reduced.
Many tapers have been proposed in the spectral estimation lit-
erature [6]. As an example, Fig. 3(a) shows the tapered estimate
of the AR(6) process using the Hann taper given by

1 2wk
2(1—COS<N_1)>, k=0,1,...,N

Fig. 3(a) implies that the broad-band bias is significantly re-
duced. Fig. 3(b) shows the smoothing kernel < |H (f)|* cor-
responding to the Hann taper centered at fA = 0.4. The side
lobes of the Hann taper are much smaller than those of the Fejér
kernel, and hence, the broad-band leakage is negligible. How-
ever, the main lobe of the Hann taper is wider than that of the

hy = —1. (16)
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Fig.3. Tapered estimate of the PSD of the AR(6) process. (a) Tapered estimate
using the Hann taper. (b) Equivalent smoothing kernel % |H(f)|? centered at
fA = 0.4. The zoomed-in view of the main lobe is shown on the top left.

Fejér kernel. As a rule of thumb, the wider the main lobe, the
smaller the side lobes would be [6]. Therefore, tapering can be
interpreted as a tradeoff between the narrow-band bias (resolu-
tion) and the broad-band bias. A natural question that arises is
which tapers are “good”? or, which taper is the “optimal” taper?
As we will see in the next section, multitaper spectral estimation
addresses this issue.

C. Inconsistency of Tapered Spectral Estimates

The second drawback of the periodogram estimate is its high
variance. Figs. 2(a) and 3(a) show that the periodogram and
tapered estimates have a high variance. Indeed, the variance of
both estimates can be computed as [6]

Var{5¢(f) Nt {2522(%)”

The expression for the variance implies that both estimators are
inconsistent, i.e., as N — oo, the variance would not tend to
zero, or equivalently, the spectral estimate would not converge
to the true PSD. As we will see in the next section, multitaper
spectral estimation addresses this issue as well.

forf # 0 and 1/2A

otherwise. a7

IV. MULTITAPER SPECTRAL ESTIMATION

Multitaper spectral estimation theory was developed through
the seminal work of David J. Thomson in 1982 [7]. The goal of
this theory is to address the issues of bias and variance of non-
parametric spectral estimation simultaneously in an “optimal”
fashion. Since then, several variants of the multitaper spectral
estimator have appeared in the literature (see, for example, [18]).
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We give an overview the original multitaper spectral estimation
technique.

Before going into the details of multitaper spectral estimation,
we begin with a simple example for motivation. Suppose that we
want to estimate the mean p of a Gaussian distribution with unit
variance by observing one sample, z; . The maximum-likelihood
(ML) estimate of the mean is /i = z;, and the variance of the es-
timate is Var(jz) = 1. Next, consider L uncorrelated samples of
the same distribution, given by 21, 29, . .., z1,. The ML estimate
of the mean is now given by fi = 1 ZZ-LZI z;, and the variance
is given by Var(zz) = 1/L. In both cases, the estimates are un-
biased, but in the latter, the variance is reduced by a factor of
L. This simple example is the main idea behind multitapering:
given L “good” and “uncorrelated” tapers, the multitaper spec-
tral estimate formed by averaging the corresponding L tapered
estimates would have a variance reduced by a factor of L. This
idea was first proposed by Bartlett [19] and later by Welch [20],
but was carried out in a principled way by Thomson [7]. We
now state this more formally.

A. Derivation of the Multitaper Spectral Estimate

Let h,i”,hf% e h;f) be a set of tapers. The multitaper
spectral estimate is given by

L
Gmeopy . LN G0
S™(f) .—L;S (f) (18)
where
R N-1 2
SOf) = A>T b aye2ehsA (19)
k=0

If the estimates S()(f) are uncorrelated, then the variance of
2

the multitaper estimate would be ~ STW To guarantee approx-

imate uncorrelatedness of the tapered estimates S'')(f), the

tapers must be orthonormal [6]:
(20)

Therefore, the problem reduces to finding a set of L orthonormal
tapers to minimize the bias of the estimate. It is not hard to show
that the expectation of the multitaper estimate is given by [6]

~ 1 L 1/2A 1 () 2
mt I 7 J ! ! /
BEm =73 [ RO - Psaar
Jj=1 /
, (2D
where HU)(f) is the Fourier transform of h,(f ) Let
2c
Ri= —~ (22)

be the designed spectral resolution, for some constant o > 1.
The constant « is denoted by the time-bandwidth product. If
N is large enough so that R is small, the expectation can be
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Schematic depiction of multitaper spectral estimation.

upper-bounded as [21]:

1.1 (B2
)}Smﬁxs(f) 1—323/_ |H'

+S(f) + O(R).

Instead of minimizing the bias itself, we seek to minimize the
above upper bound [21]. That is, we seek a set of L tapers that
maximize

E{S™(f D(FHPdf

(23)

L

1 R/2 0
12/,

i=1

MPdf. (24)

The above maximization problem can be recast in the time
domain as follows [6]:

L N-1N-1 .
1 (jysin (TRA(k = 1)) ;)
max — hy’ hy?’.
. _ (25)
Leth() : [h(()z),hgw,. .. ,hg\z,ll]’, and & be an N x N sym-

sin (rRA (k1))

metric matrix with elements (®p);; = D . Then,
the above maximization problem can be expressed as
Z h'®,h() (26)
h(1) h(z) h(k)

The above equation resembles the principal component analysis
(PCA) of the matrix @, and the solution is indeed given by the
L eigenvectors of the matrix ® corresponding to its L highest
eigenvalues. Fig. 4 shows a schematic depiction of the multitaper
spectral estimation. Given R, one can find these eigenvectors by
performing PCA on ®x and picking the first L eigenvectors
corresponding to the L highest eigenvalues. These eigenvectors
are known as discrete prolate spheroidal sequences (dpss) or
Slepian sequences [6], [22]. They form a set of orthonormal
tapers, which have the highest possible concentration of energy
in the band [—R/2, R/2]. In order for the L tapers to have
desirable concentration properties in the band [—R/2, R/2], it
can be shown that [6] a good choice of L is

|-1.

Fig. 5 shows some of the dpss for N = 128 and o = 4. The
above bound in this case implies that L must be significantly

L < |2« (27)

Ao 2

N? ol —

oy |

R A
1% 01 02 A 03 04 05
Fig. 5. Example of dpss for N = 128 and R = 8/NA. (a) the first (black),

second (blue) and seventh (red) dpss, and (b) the equivalent smoothing kernels.

less than 7. As Fig. 5 shows, the first and second dpss sequences
have a very high concentration in the band [~ 555, 355 ], but the
seventh sequence exhibits a high degree of broad-band leakage.

Since for L < |2« — 1 the dpss sequences have very high
concentration of energy in the main lobe, the narrow-band bias
or the spectral resolution can be very well approximated by the
width of the main lobe, which is the designed spectral resolution
R. Fixing the spectral resolution identifies «, which can be
thought of as the initial step of the multitaper spectral estimation.
Given data of length N and sampling interval A, the multitaper
spectral estimation can be summarized as follows:

1) Fix the spectral resolution R, such that o« = % > 1.

2) Fix L < [2a] — 1.

3) Form the matrix ®g, and find its L eigenvectors
corresponding to the L highest eigenvalues.

4) Form the individual tapered spectral estimates using
the L dpss sequences, and average them.
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Fig. 6. Multitaper and ML estimates of the PSD of the AR(6) process with

R =8/NA and L = 4. (a) the multitaper and ML estimates, (b) the equivalent
smoothing kernel centered at fA = 0.4. The zoomed-in view of the main lobe
is shown on the top left.

Note that in practice, step 3 can be carried out using standard
software which generate the dpss sequences given R and L.

For the AR(6) process, we fix a spectral resolution of
R = 3tx. which implies a = 4. We thus use L = 4 tapers
to form the multitaper estimate. Fig. 6(a) shows the multitaper
estimate of the PSD of the AR(6) process. Comparing this es-
timate to those of the periodogram (see Fig. 2) and the Hann
taper (see Fig. 3), we see that both the bias and variance are
appreciably reduced. In Fig. 6(a), we also show the approxi-
mate ML estimate of the AR(6) process using the least squares
method [6]. The ML estimate is a parametric estimate, which
assumes that the data are generated by an AR model and directly
estimates the AR parameters. The ML estimate as a parametric
method is more robust to finite data than nonparametric meth-
ods [6]. In general, when a parametric model assumption is valid
for the data, parametric methods are more accurate and more
efficient than nonparameteric methods [6]. However, parametric
methods require a model order selection step [23] analogous to
the choice of number of tapers for the multitaper method. We
refer the readers to [6] for a detailed discussion of parametric
spectral estimation. Moreover, as it will be discussed later in
Section V, nonparametric methods such as the multitaper esti-
mate are more suitable when dealing with nonstationary data
and their spectrogram representation.

Fig. 6(b) shows the equivalent smoothing kernel of the four
dpss tapers, which forms the bias. As shown in Fig. 6(b), the
smoothing kernel has a very high side lobe suppression which
results in a significantly reduced broad-band leakage. In par-
ticular, the first side lobe is about 50 dB lower than the main
lobe. As a result, the energy is highly concentrated within the
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main lobe and, as expected by design, the spectral resolution
can be very well approximated by the width of the main lobe
R = 13tx . Note that the main lobe of the equivalent smoothing
kernel of the multitaper estimate in Fig. 6(b) is wider than that
of the periodogram [see Fig. 2(b)] and the Hann tapered esti-
mate [see Fig. 3(b)] by design. A wider main lobe results from
choosing a higher value of the time-bandwidth product «, which
in turn admits the use of more tapers with good concentration
properties. This later fact can be viewed as the tradeoff between
the narrow-band bias and variance.
The multitaper estimate is approximately unbiased:

E{S™(f)} ~ S(f)

if only significantly less than |2« — 1 tapers are used [21].
Also, if the true PSD is uniformly continuous, the variance can
be upper-bounded as [21]

(28)

forf # 0 and 1/2A
otherwise

wis < {54

4o <1> +O(R).
L

The second and thirds terms are negligible for large enough L
and small enough R. Comparing (29) with (17), the variance of
the multitaper estimate is reduced by a factor of L. Since o =
RNA/2, for a fixed resolution R, as N — oo, we have o —
00. Also, since L < |2«] — 1, one can choose L so that L —
oo [21]. Therefore, the multitaper estimate is asymptotically
consistent, i.e., the variance goes to zero as N — oc.

It is possible to extend the multitaper method to multivariate
time series [24]. Suppose that xj := 1 4, %2, ..., Tpk] 1S
a p-dimensional s.o.s. time series. Then, the multitaper cross-
spectral estimate of the /th and mth time series is given by [24]

(29)

(30)
i=1
where
gt - i ] ! 1 . .
Sl<,2131 (f):=A [ Z hl(c”‘rlﬁkeﬂﬂka‘“ Z hgcz)mrmkeZkafA]
k=0 k=0
(31)

and L is defined the same as in the univariate case. The statistical
properties of the multivariate multitaper spectral are discussed
in detail in [24].

As mentioned earlier, other methods such as the Welch’s
method [20], address the problems of bias and variance in sub-
optimal ways. In the Welch’s method, the data are divided into
several segments in time domain, where for each segment a
tapered estimate is computed. The spectral estimate is the av-
erage of the tapered estimates obtained from each segment of
the data. The length of the data segments used in the Welch’s
methods limits the spectral resolution, but the averaging of ta-
pered estimates from several segments reduces the variance of
the final estimate. The multitaper method, however, provides a
more favorable tradeoff between narrow-band bias, broad-band
bias, and variance than the Welch’s method [25].
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Spectrogram of EEG during propofol-induced general anesthesia. (a) The time-domain EEG signal, (b) spectrogram from periodogram spectral estimates,

(c) spectrogram from tapered spectral estimates using the Hann taper, and (d) spectrogram from multitaper spectral estimates. The right panels show the
corresponding zoomed-in view of 8 s of data starting at minute 20 (marked with the red-dashed line in A).

V. APPLICATION TO REAL DATA

Often in practice the assumption of second-order stationarity
does not hold. Therefore, the spectral estimation techniques for
$.0.s. processes cannot be readily applied to nonstationary sig-
nals. However, for a large class of nonstationary signals, such
as EEG under sleep or anesthesia, the variability in the spectral
characteristics of the signal occurs at a time scale much larger
than the sampling interval. A widely used solution to spectral
characterization of such nonstationary signals is the following:
pick a window small enough so that the signal is assumed to be
s.0.s., compute the nonparametric spectral estimate using tech-
niques for s.o.s. processes, slide the window across time, and
repeat. This idea leads to a spectral representation for nonsta-
tionary signals, termed the spectrogram representation.

The spectrogram is the concatenation of the PSD of the data
in small sliding windows with overlap. The overlap makes it
possible to compute spectral estimates at a desired temporal
resolution. For each window of the observation, the spectral es-
timate is obtained using the estimation techniques common for
s.0.s. processes. The choice of the window length determines
the spectral resolution of the spectral estimate. However, the
choice of the window length also limits the time resolution of the
spectrogram, by the uncertainty principle. The larger the win-
dow length is chosen, the higher the spectral resolution and the
lower the temporal resolution would be. More explicitly, con-

sider a nonstationary signal z,, n =0,1,..., M. Computing
the spectrogram representation based on multitaper spectral es-
timation can be summarized as follows:

1) Estimate the time-scale on which the data can be as-
sumed to be s.0.s., and denote it by 7. Let N := L% .

2) Pick a spectral resolution R, such that o = % > 1.

3) Pick a sliding length 7 < T', and let K := | % |N.

4) Find the multi-taper estimate of the PSD of the data
at windows of length IV, centered at time indices n =

%7 % + K, % + 2K, --- until the entire data series is

covered.

Itis possible to construct the spectrogram based on a paramet-
ric spectral estimator. At each window, assuming an AR model,
a parametric estimate of the spectral density can be obtained
through model selection and fitting. However, when dealing
with long datasets, model selection at each window results in
a higher computational complexity than that required by the
nonparametric spectrogram.

To illustrate the above procedure for multitaper spectrogram,
we present an example from human EEG under propofol-
induced general anesthesia. Fig. 7(a) shows the EEG data from
a frontal electrode of a subject undergoing propofol-induced
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Fig. 8. Spectrogram of EEG during sleep. (a) Time-domain EEG signal, (b) spectrogram from periodogram spectral estimates, (c) spectrogram from tapered

spectral estimates using the Hann taper, and (d) spectrogram from multitaper spectral estimates. The right panels show the corresponding zoomed-in view of 4 s

of data starting at 58:01 (marked with the red-dashed line in A).

general anesthesia during a surgical procedure lasting ~ 33
min. The anesthetic is administered at around minute 5. The
right panel shows the zoomed-in view of 8 s of the data
starting at minute 20. The sampling frequency of the EEG is
F; = % = 250 Hz. The spectrogram representation of the EEG
data was computed through the following steps.

1) We estimate the time scale on which the data are stationary
to be of the order of a few seconds. We choose 7' = 8s
(which implies N := | X | = 2000).

2) We pick a spectral resolution of 1 Hz (which implies aw =
YAk _ g

3) We pick a sliding length of 7 = 4s (which implies K =
1000).

4) We find the multitaper estimate of the PSD of the data at
a window of length 2000 (using four tapers), centered at
time indices n = 1000, 2000, 3000, . . ..

Fig. 7(b) shows the spectrogram of the EEG data obtained
by the periodogram estimate at each window. The colormap
of the PSD is in the dB scale. During propofol-induced gen-
eral anesthesia, dominant alpha (8-12 Hz) activity arises in
the frontal area of the scalp, whereas in the awake state, the
frontal alpha activity is highly suppressed [11]. The right panel
shows the zoomed in view of the PSD estimate at minute 20,
which shows high activity in the alpha band. Fig. 7(c) shows
the spectrogram where the Hann taper is used to obtain the

spectral estimates. Finally, Fig. 7(d) shows the spectrogram
obtained by the multitaper method. Clearly, the spectrograms
obtained by periodogram and tapering have higher variances
than those obtained by the multitaper method (see the right
panels).
As another example, we consider the spectral representa-
tion of human EEG data during sleep. The data were ob-
tained from the SHHS Polysomnography Database (available
at: http://www.physionet.org/pn3/shhpsgdb/). Fig. 8(a) shows
the EEG data from a dorsal electrode of a subject during night
sleep. The duration of the data is ~1.5 h. The sampling fre-
quencyis Fy = % = 250 Hz. Since during sleep transient events
occur on a time scale of a few seconds, we choose 1" = 4s. We
also choose a spectral resolution of 2 Hz, since the frequency
bands of interest during sleep are typically wider than 2 Hz.
Finally, we choose a sliding length of 7 = 1. The spectro-
gram representation of the EEG data was computed through the
following steps.
1) We estimate the time scale on which the data are stationary
to be of the order of a few seconds. We choose T' =4 s
(which implies N := | X | = 1000).

2) We pick a spectral resolution of 2 Hz (which implies o =
Nah )

3) We pick a sliding length of 7 = 1 s (which implies K =
250).
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4) We find the multitaper estimate of the PSD of the data at a
window of length 500 (using four tapers), centered at time
indices n = 500, 750, 1000, . . ..

Fig. 8(b) shows the periodogram estimate of the EEG data
shown in Fig. 8(a). The colormap of the PSD is in the dB
scale. During sleep, delta activity (< 4Hz) as well as transient
sleep spindles (~1 s waveforms with 8—14-Hz frequency con-
tent) [26], [27] are the dominant spectral components, and are
indicators of the sleep stage [27], [28]. Up to minute ~ 34, the
subject is in the nonrapid eye movement (NREM) sleep stages,
where dominant delta activity and sleep spindles are present.
From minute ~34 to 57, the subject is in the rapid eye move-
ment stage, where the delta activity is significantly reduced and
the sleep spindles are absent. From minute ~ 57 on the subject
transitions back into the NREM sleep. The right panel zoomed-
in view of Fig. 8(a) shows a sleep spindle activity in the middle
of the observation window. The right panel of Fig. 8(b) shows
the zoomed in view of the PSD estimate which shows high ac-
tivity in the spindle frequency band. Fig. 7(c) corresponds to
the spectrogram obtained using the Hann taper at each window.
Finally, Fig. 7(d) shows the spectrogram obtained by the multi-
taper method at each window. Similar to the case of anesthesia
EEG data, the spectrograms obtained by periodogram and taper-
ing have higher variances than those obtained by the multitaper
method.

VI. DISCUSSION AND CONCLUSION

Spectral analysis is one of the most commonly used signal
processing techniques. Nonparametric spectral analysis based
on Fourier methods is appealing because this approach makes
it possible to quickly decipher the harmonic structure of com-
plex nonstationary signals using limited a priori knowledge.
Proper use of these methods does require care and an under-
standing of potential problems and their solutions. Although
multitaper spectral methods were devised more than 30 years
ago, they are still not widely used in signal processing analyses
in bioengineering. Because multitaper spectral methods provide
a principled way to solve the challenging problem of balancing
the bias-variance tradeoff in spectral estimation, we felt that
these techniques would be a timely topic for this review.

The bias-variance tradeoff is defined by the inequality in (23).
Finding the optimal solution for the tradeoff requires minimizing
the quadratic form in (24) which is equivalent to finding the
eigenvectors of the matrix ® in (26). The first L eigenvectors
of ®p defined by its L largest eigenvalues, are the dpss and
provide the tapers to be applied to the data.

Application of the multitaper spectral methods is a two-step
process. First, as always, the user has to choose the time win-
dow over which local stationarity of the signal is assumed to
hold. Second, the user must specify the desired level of spectral
resolution within the time window. Once the level of spectral
resolution is set, then given the sampling interval of the data, the
number of tapers which minimizes the bias-variance tradeoff is
computed using (27).

The multitaper spectral estimates minimize variance by av-
eraging L approximately independent spectral estimates. The
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spectral estimates are independent because the tapers are or-
thogonal. The larger L is chosen then, the smaller the variance
of the spectral estimate. However, as L increases bias increases
because the degree of side-lobe suppression of the tapers de-
creases leading to leakage of power from other frequencies (see
Fig. 5). Specifying the spectral resolution effectively chooses
the width of the central lobe of the equivalent taper. Hence,
frequencies that differ by less than the spectral resolution are
indistinguishable.

In addition, the statistical properties of multitaper methods
are well characterized making it easy to construct confidence
intervals about any specific frequency band and also to use hy-
pothesis testing methods to evaluate in a principled way the
differences between spectra computed from two different sig-
nals (see, for example, [6], [7], and [29]). Although we have
not included an analysis of the spectral coherence, it must be
noted that cross-spectral quantities can be readily computed us-
ing multitaper methods [24]. Multitaper spectral methods are
implemented in MATLAB and R. They are also part of the
Chronux tool box maintained at website www.chronux.org.

We hope that this review helps enhance the use of multitaper
spectral methods in bioengineering signal processing problems.
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